5.5 Modified Rankine Cycle:

Fig.5.5(a). p-v diagram of modified Rankine cycle

Fig.5.5(b). T-s diagram of modified Rankine cycle

Process 1-2 represents the admission of high pressure steam into the engine cylinder, process 2-3 is the reversible adiabatic expansion of steam in the cylinder and process $3-4$ is the exhaust of steam into condenser. Net work done is represented by the area 1-2-3-4-1.

Observe that the area 3-6-5 is very small and in order to obtain this small work, the cylinder volume must be increased from v_{6} to v_{3}. This makes cylinder very bulky. For this reason, the expansion process is terminated at point 5 . So that indicator diagram becomes 1-2-5-6-4. The work lost is small but there is large saving in cylinder volume. Process 5-6 represents the release of steam into the condenser, thus causing the cylinder pressure to drop from P_{5} to P_{6}. Process 6-4 is the exhaust of steam at constant pressure. Cycle 1-2-5-6-4 is called as the "modified Rankine cycle".

Thermal Efficiency:

Considering the unit mass of working fluid,

$$
\begin{gathered}
\text { Heat supplied }=\mathrm{h}_{2}-\mathrm{h}_{1} \\
\text { Net workdone }=\left\{\mathrm{w}_{2-5}+\mathrm{w}_{5-6}+\mathrm{w}_{4-1}\right\} \\
=\left(\mathrm{h}_{2}-\mathrm{h}_{5}\right)-\int_{5}^{6} \mathrm{vdp}+\left(\mathrm{h}_{4}-\mathrm{h}_{1}\right) \\
=\left(\mathrm{h}_{2}-\mathrm{h}_{5}\right)+\mathrm{v}_{5}\left(\mathrm{p}_{5}-\mathrm{p}_{6}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{1}\right)
\end{gathered}
$$

$\mathrm{v}_{5}=$ specific volume of steam at state 5.

$$
\eta_{\text {th }}=\frac{\text { Net workdone }}{\text { Heat sup plied }}=\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{5}\right)+\mathrm{v}_{5}\left(\mathrm{p}_{5}-\mathrm{p}_{6}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{1}\right)}{\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)}
$$

If pump work is neglected, then $h_{4} \approx h_{1}$

$$
\eta_{\mathrm{th}}=\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{5}\right)+\mathrm{v}_{5}\left(\mathrm{p}_{5}-\mathrm{p}_{6}\right)}{\left(\mathrm{h}_{2}-\mathrm{h}_{4}\right)}
$$

